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After a new tortoise coordinate transformation is adopted, the entropy and non-thermal
radiation of an arbitrarily accelerating charged black hole are discussed as an example
of non-stationary black holes. The same cut-off relation is chosen as static case, which
is independent of space-time, and then the entropy of the non-stationary black hole is
also proportional to the area of its event horizon. Meanwhile, the crossing of the particle
energy levels near the event horizon is studied, the representative of the maximum value
of the crossing energy levels is the same as the usual tortoise coordinate transformation.
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1. INTRODUCTION

Since Bekenstein suggested that the entropy of a black hole is proportional
to its surface area, the related research work has got much progress (Bekenstein,
1973; Hawking, 1975). The brick-wall model suggested by ‘t Hooft (1985) has
been studied extensively for its relation to the statistical explanation of black hole
entropy. Recently, the brick-wall model is improved to the thin film model (Li and
Zhao, 2001). Adopting the usual tortoise coordinate transformation, in process of
calculating the static or stationary black hole’s entropy by the thin film model, the
cut-off relation become more simpler. However, in the non-stationary black hole
space-time, the cut-off relation is very complicated, and it varies with the space-
time if we want to keep the Bekenstein–Hawking entropy is proportional to the
area (He et al., 2002). In this paper, using a new tortoise coordinate transformation
(Yang, 2003), we calculate the entropy of an arbitrarily accelerating charged
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black hole as an example of non-stationary black holes, successfully simplify
its complicated cut-off relation to a simple one which is the same as the cut-off
relation in static case and preserve the conclusion that the entropy of black hole
is proportional to its surface area. Meanwhile, using the new tortoise coordinate
transformation, we discuss the non-thermal radiation of the black hole and find
that the representative of the maximum value of the crossing energy levels is the
same as the usual tortoise coordinate transformation.

2. METRIC OF ARBITRARILY ACCELERATING
CHARGED BLACK HOLE

Using the advanced Eddington coordinate and adopting (−,+,+,+) signature,
the line element of the arbitrarily accelerating charged black hole is:

ds2 = g00dv2 + 2g01dvdr + 2g02dvdθ + 2g03dvdϕ + g22dθ2 + g33dϕ2, (1)

where

g00 = −
[

1 − 2m

r
− 2ar cos θ + Q2

r2
− 4a

Q2

r
− r2(f 2 + h2 sin2 θ )

]
,

g01 = g10 = 1, g02 = g20 = r2f, g03 = g30 = r2h sin2 θ,

g22 = r2, g33 = r2 sin2 θ,

f = −a sin θ + b sin ϕ + c cos ϕ, h = cot θ (b cos ϕ − c sin ϕ), (2)

m = m(v),Q = Q(v) are the black hole’s mass and charge respectively. a =
a(v) is the magnitude of acceleration, while b = b(v) and c = c(v) describe the
changing rate of the acceleration’s direction. The determinant and non-zero contra-
variant components of the metric are:

g = −r4 sin2 θ, (3)

g01 = g10 = 1, g11 = 1 − 2m

r
− 2ar cos θ + Q2

r2
− 4a

Q2

r
cos θ,

g12 = g21 = −f, g13 = g31 = −h, g22 = 1

r2
, g33 = 1

r2 sin2θ
· (4)

The surface equation of event horizon can be written as:

H = H (v, r, θ, ϕ) = 0, (5)

or

rh = rh(v, θ, ϕ), (6)
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which should satisfy null surface condition:

gµν ∂H

∂xµ

∂H

∂xν
= 0· (7)

From Equations (5) and (6), we have:

∂H

∂r

∂r

∂θ
+ ∂H

∂θ
= 0,

∂H

∂r

∂r

∂ϕ
+ ∂H

∂ϕ
= 0,

∂H

∂r

∂r

∂v
+ ∂H

∂v
= 0· (8)

From Equations (4), (7) and (8),we know that the event horizon should
satisfy

1 − 2m

rh

− 2arh cos θ + Q2

r2
h

− 4a
Q2

rh

cos θ − 2rhv + 2f rhθ + 2hrhϕ

+ r2
hθ

r2
h

+ r2
hϕ

r2
h sin2 θ

= 0, (9)

where

rhθ =
(

∂r

∂θ

)
r=rh

, rhv =
(

∂r

∂v

)
r=rh

, rhϕ =
(

∂r

∂ϕ

)
r=rh

· (10)

Define a function as

F (rh) = 1 − 2m

rh

− 2arh cos θ + Q2

r2
h

− 4a
Q2

rh

cos θ − 2rhv + 2f rhθ + 2hrhϕ

+ r2
hθ

r2
h

+ r2
hϕ

r2
h sin2 θ

, (11)

we see F (rh) = 0 is identical with the event horizon Equation (9).

3. TEMPERATURE OF BLACK HOLE

According to Zhu et al. (1994), we can study the Hawking radiation of the
arbitrarily accelerating charged black hole, and get the Hawking temperature. In
the curved space-time, the dynamic equation of Klein-Gordon particle with mass
µ is:

1√−g

(
∂

∂xµ
− ieAµ

) [√−ggµν

(
∂

∂xν
− ieAν

)
�

]
− µ2� = 0, (12)

where e is the charge of K-G particle, and Aµ is the electromagnetic four-vector
produced by the black hole’s charge.
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Using the Lorentz condition 1√−g
∂

∂xµ (
√−ggµνAν) = 0 ,we have

1√−g

∂

∂xµ

(√−ggµν ∂

∂xν
�

)
− 2ieAµgµν ∂

∂xν
� − e2gµνAµAν� − µ2� = 0·

(13)
Equation (13) can be expressed by

g11 ∂2�

∂r2
+ 2

∂2�

∂v∂r
+ 2g12 ∂2�

∂r∂θ
+ 2g13 ∂2�

∂r∂ϕ
+ g22 ∂2�

∂θ2
+ g33 ∂2�

∂ϕ2

+ fv

∂�

∂v
+ fr

∂�

∂r
+ fθ

∂�

∂θ
+ fϕ

∂�

∂ϕ
+ f0� = 0, (14)

where

fv = 2

r
− 2ieA1,

fr = 2

r
g11 + ∂g11

∂r
+ g12 cot θ + ∂g12

∂θ
+ ∂g13

∂ϕ

−2ie(A0 + A1g
11 + A2g

12 + A3g
13),

fθ = 2

r
g12 + g22 cot θ − 2ie(A1g

12 + A2g
22),

fϕ = 2

r
g13 − 2ie(A1g

13 + A3g
33),

f0 = −e2gµνAµAν − µ2· (15)

Now we use a new tortoise coordinate transformation

r∗ = 1

2κ(v0, θ0, ϕ0)
ln[r − rh(v, θ, ϕ)], v∗ = v − v0,

θ∗ = θ − θ0, ϕ∗ = ϕ − ϕ0, (16)

then the Equation (14) become

ĝ11

2κ(r − rh)

∂2�

∂r2∗
+ 2

∂2�

∂v∗∂r∗
+ (2g12 − 2g22rhθ )

∂2�

∂θ∗∂r∗

+(2g13 − 2g33rhϕ)
∂2�

∂ϕ∗∂r∗
+

[
− ĝ11

r − rh

− (g22rhθθ + g33rhϕϕ)

− fvrhv + fr − fθrhθ − fϕrhϕ

]
∂�

∂r∗
+ 2κ(r − rh)

(
g22 ∂2

∂θ2
∗

+ g33 ∂2

∂ϕ2
∗

+fv

∂

∂v∗
+ fθ

∂

∂θ∗
+ fϕ

∂

∂ϕ∗
+ f0

)
� = 0, (17)
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where

ĝ11 = g11 − 2rhv − 2g12rhθ − 2g13rhϕ + g22r2
hθ + g33r2

hϕ · (18)

Comparing Equation (18) with Equation (11), we get

lim
r→rh

ĝ11 = F (rh) = 0· (19)

As r → rh (it represents r → rh(v0, θ0, ϕ0), v → v0, θ → θ0, ϕ → ϕ0), we
suppose the coefficient of ∂2�

∂r2∗
to be A, so

A = lim
r→rh

ĝ11

2κ (r − rh)
= lim

r→rh

∂ĝ11/∂r

2κ
= 1

2κ
lim
r→rh

∂ĝ11

∂r
· (20)

Adjusting the parameter κ to make A = 1, so

κ = 1

2
lim
r→rh

∂ĝ11

∂r
= 1

r2
h

(m + 2aQ2 cos θ ) − 1

r3
h

(
Q2 + r2

hθ + r2
hϕ

sin2 θ

)
− a cos θ ·

(21)
As r → rh, Equation (18) can be reduced to

∂2�

∂r2∗
+ 2

∂2�

∂v∗∂r∗
+ B

∂2�

∂θ∗∂r∗
+ C

∂2�

∂ϕ∗∂r∗
+ (D + i2ω0)

∂�

∂r∗
= 0, (22)

where

B = lim
r→rh

(2g12 − 2g22rhθ ), (23)

C = lim
r→rh

(2g13 − 2g33rhϕ), (24)

D = lim
r→rh

[
− ĝ11

r − rh

−
(

g22rhθθ + g33rhϕϕ + 2rhv

r

)
+

(
2

r
g11 + ∂g11

∂r

+∂g12

∂θ
+ ∂g13

∂ϕ

)
−

(
2

r
g12 + g22 cot θ

)
rhθ − 2

r
g13rhϕ

]
, (25)

ω0 = lim
r→rh

[eA1rhv + e(A1g
12 + A2g

22)rhθ + e(A1g
13 + A3g

33)rhϕ

− e(A0 + A1g
11 + A2g

12 + A3g
13)]· (26)

Obviously B, C, D, ω0 have limited values respectively.
In the vicinity of the event horizon, the solution of Equation (22) can be

written as (Zhao and Dai, 1991)

� = R (r∗) e−iωv∗+ikθ θ∗+ikϕϕ∗ · (27)
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Substituting Equation (27) into Equation (22), we obtain

∂2R (r∗)

∂r2∗
+ {

D − i
[
2 (ω − ω0) − Bkθ − Ckϕ

]} ∂R (r∗)

∂r∗
= 0· (28)

The solutions of Equation (28) are

Rin
ω = e−iωv∗ , Rout

ω = e−iωv∗e−Dr∗+i[2(ω−ω0)−Bkθ −Ckϕ]r∗ · (29)

So the in-going wave and the out-going wave on horizon are

�in
ω = e−iωv∗eikθ θ∗+ikϕϕ∗ ,

�out
ω = e−iωv∗e−Dr∗+i[2(ω−ω0)−Bkθ−Ckϕ]r∗ eikθ θ∗+ikϕϕ∗ (30)

= e−iωv∗ (r − rh)−D/2κ (r − rh)i[2(ω−ω0)−Bkθ−Ckϕ]/2k eikθ θ∗+ikϕϕ∗ ·
We see that �out

ω is not analytic at r → rh , so we have to analytically extend
it through the lower half complex r plane into the inside of the event horizon and
obtain

r − rh = |r − rh| e−iπ = (rh − r) e−iπ ·
So the out-going wave at r < rh is

�out
ω (r < rh) = e−iωv∗+ikθ θ∗+ikϕϕ∗ [(rh − r)e−iπ ]

−D/2κ

× [(rh − r)e−iπ ]i[2(ω−ω0)−Bkθ−Ckϕ ]/2κ

= e−iωv∗e−Dr∗+i[2(ω−ω0)−Bkθ −Ckϕ ]r∗ eikθ θ∗+ikϕϕ∗+iDπ/2κ

× eπ[2(ω−ω0)−Bkθ −Ckϕ ]/2κ · (31)

The probability of the scattered out-going wave is∣∣∣∣�out
ω (r > rh)

�out
ω (r < rh)

∣∣∣∣
2

= e−π[2(ω−ω0)−Bkθ−Ckϕ]/κ · (32)

According to Damour and Ruffini (1976) and Sannan (1998), we get the
Hawking thermal spectrum as

Nω = 1

e[(ω−ω0)−Bkθ /2−Ckϕ/2]/kBT − 1
, (33)

where kB is Boltzmann’s constant. This result indicates that the parameter κ is
connected with the radiation temperature by

T = κ

2πkB
· (34)
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4. THE DRAGGING VELOCITIES

Introducing a coordinate transformation

R = r − rh, dR = dr − rhvdv − rhθdθ − rhϕdϕ, (35)

the line element (1) becomes

ds2 = ĝ00dv2 + 2 dvdR + 2ĝ02dvdθ + 2ĝ03dvdϕ + ĝ22dθ2 + ĝ33dϕ2, (36)

where

ĝ00 = g00 + 2rhv, ĝ02 = g02 + rhθ ,

ĝ03 = g03 + rhϕ, ĝ22 = g22, ĝ33 = g33· (37)

From Equation (36), we have

ds2 =
(

ĝ00 − ĝ2
02

ĝ22
− ĝ2

03

ĝ33

)
dv2 + 2dvdR + ĝ22

(
dθ + ĝ02

ĝ22
dv

)2

+ ĝ33

(
dϕ + ĝ03

ĝ33
dv

)2

· (38)

Obviously, the dragging velocities are

	θ = dθ

dv
= − ĝ02

ĝ22
, 	ϕ = dϕ

dv
= − ĝ03

ĝ33
· (39)

Comparing Equations (23) , (24) with Equation (38), we obtain

B

2
= (	θ )r→rh

,
C

2
= (

	ϕ

)
r→rh

· (40)

We see that the parameters B and C in Equations (23) and (24) are concerned with
the dragging velocities on the event horizon.

5. ENTROPY OF THE BLACK HOLE

According to the method suggested by Tian and Zhao (2002), we use the thin
film model to calculate the entropy of black hole. In the thin film model , the black
hole entropy are contribution of the field near the horizon in region rh + ε →
rh + ε + δ(ε is the distance from the horizon, δ is the thickness). The temperature
is variable with the position or the angles (θ, ϕ), therefore we must decompose
the region into many small parts: for each part, the region is rh (v, θi, ϕi) + ε →
rh (v, θi, ϕi) + ε + δ, θi = θi + �θi, ϕi = ϕi + �ϕi. i = 1, 2, 3, . . . , n, . . . , and
we consider that the field is quasi-equilibrium and the statistical mechanics is
valid in each small region.
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The determinant and the non-zero contra-variant components of the metric
(36) are

ĝ = −r4 sin2 θ, (41)

ĝ01 = 1, ĝ22 = 1

r2
, ĝ33 = 1

r2 sin2 θ
,

ĝ12 = − ĝ02

ĝ22
= 	θ, ĝ

13 = − ĝ03

ĝ33
= 	ϕ,

ĝ11 = 1 − 2m

r
− 2arh cos θ + Q2

r2
− 4a

Q2

r
cos θ − 2rhv + 2f rhθ + 2hrhϕ

+ r2
hθ

r2
+ r2

hϕ

r2 sin2 θ
· (42)

We see that ĝ11 here is just that in Equation (18) , so we have

ĝ11 (rh) = 0,
∂ĝ11

∂r
|r=rh

= 2κ· (43)

The K-G equation of the metric in Equation (36) is

1√−ĝ

(
∂

∂xµ
− ieÂµ

) [√
−ĝĝµν

(
∂

∂xν
− ieÂν

)]
� − µ2� = 0, (44)

where Âµ is the transformation of Aµ in the original metric. Supposing � =
e−iEv+iG(R,θ,ϕ) with WKB approximation, using Lorentz condition,we get

ĝ11k2
R − 2[E − 	θkθ − 	ϕkϕ + e(Â0 + Â1ĝ

11 + Â2	θ + Â3	ϕ)]kR + ĝ22k
2
θ

+ ĝ33k2
ϕ − 2e(Â1	θ + Â2ĝ

22)kθ − 2e(Â1	ϕ + Â3ĝ
33)kϕ + 2eÂ1E

+ e2(2Â0Â1 + 2	θÂ1Â2 + 2	ϕÂ1Â3 + ĝ11Â2
1 + ĝ22Â2

2 + ĝ33Â2
3) + µ2 = 0,

(45)

where kR = ∂G
∂R

, kθ = ∂G
∂θ

, kϕ = ∂G
∂ϕ

·
The solutions of Equation (45) are

k±
R = E′ + eÂ1ĝ

11

ĝ11

± 1

ĝ11

√
E2́ − ĝ11[ĝ22(kθ − eÂ2)2 + ĝ33(kϕ − eÂ3)3 + µ2], (46)

where E′ = E − 	θkθ − 	ϕkϕ + e
(
Â0 + Â2	θ + Â3	ϕ

) ·
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According to quantum statistical mechanics, decomposing the thin film into
many small parts, the free energy of No. i subsystem is given by

�Fi = −
∞∫

0

dE′ �(E′)
eβE′ − 1

, (47)

where �
(
E′) is the number of quantum states with energy less than E′. According

to the quasi-classical quantized condition and thin film brick-wall model, we have

�
(
E′) = 1

4π3

∫
dkθ

∫
dkϕ

θi+�θi∫
θi

dθ

ϕi+�ϕi∫
ϕi

dϕ


 ε+δ∫

ε

k+
R dR +

ε∫
ε+δ

k−
R dR


 . (48)

Substituting Equation (46) into Equation (48), and considering that E′2 −
ĝ11[ĝ22(kθ − eÂ2)2 + ĝ33(kϕ − eÂ3)2 + µ2] ≥ 0 restricts the upper limits and the
lower limits of kθ , kϕ , so

�
(
E′) = E′3

6π2

θi+�θi∫
θi

dθ

ϕi+�ϕi∫
ϕi

dϕ

ε+δ∫
ε

(
ĝ11)−2

(ĝ22ĝ33)−
1
2 dR

= E′3

6π2

∫
dAi

ε+δ∫
ε

(ĝ11)−2dR, (49)

where
∫

dAi = ∫ θi+�θi

θi

∫ ϕi+�ϕi

ϕi
(ĝ22ĝ33)−1/2dθdϕ is the small area on the event

horizon in the No. i subsystem. We rewrite it as �Ai .
Substituting Equation (49) into Equation (48),we can obtain

�Fi = −�Ai

6π2

ε+δ∫
ε

(ĝ11)−2dR

∞∫
0

E′3

eβE′ − 1
dE′· (50)

As ĝ11 (rh) = 0, we can decompose ĝ11 as ĝ11 = p (v, r, θ, ϕ) (r − rh), so

�Fi = −�Ai

6π2

∞∫
0

E′3

eβE′ − 1
dE′

ε+δ∫
ε

1

p2 (v, r, θ, ϕ) (r − rh)2 dR (51)

≈ − � Ai

π2δ

90β4p2 (rh) ε (ε + δ)
·

From the relation of the entropy and the free energy of the subsystem

�Si = β2 ∂ � Fi

∂β
|β=βh

= − � Ai

4π2

90β4
hp

2 (rh)

δ

ε (ε + δ)
· (52)
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Considering Equation (43), we have p (rh) = ∂ĝ11

∂r
|r=rh

= 2κ, noticing
βh = 2π

κ
, then

�Si = 1

90βh

δ

ε (ε + δ)

1

4
� Ai · (53)

If we choose ε, δ to make

δ

ε (ε + δ)
= 90βh, (54)

we can get

�Si = 1

4
� Ai · (55)

So the total entropy of the black hole is

S =
∑

i

�Si = 1

4

∑
i

�Ai = 1

4
Ah· (56)

6. NONTHERMAL RADIATION OF THE BLACK HOLE

In the curved space-time described by the line element (1), the Hamilton–
Jacobin equation of the particle with mass µ and charge e is (Yang and Zhao,
1993)

gµν

(
∂S

∂xµ
− eAµ

) (
∂S

∂xν
− eAν

)
+ µ2 = 0· (57)

Considering the new tortoise coordinate transformation such as (16),we have

Ã

(
∂S

∂r∗

)2

+ 4κ (r − rh) B̃

(
∂S

∂r∗

)
+ [2κ (r − rh)]2 C̃ = 0, (58)

where

Ã = −2rhv + g11 − 2g12rhθ − 2g13rhϕ + g22r2
hθ + g33r2

hϕ, (59)

B̃ = −ω − eA0 + (
rhv + g12rhθ + g13rhϕ − g11

)
eA1 + (

g22rhθ − g12
)
eA2

+ (g33rhϕ − g13)eA3 + (g12 − g22rhθ )Pθ + (g13 − g33rhϕ)Pϕ, (60)

C̃ = 2eA1ω + e2
(
2A0A1 + g11A2

1 + 2g12A1A2 + 2g13A1A3 + g22A2
2 + g33A2

3

)
− 2e(g12A1 + g22A2)Pθ − 2e(g13A1 + g33A3)Pϕ + g22P 2

θ + g33P 2
ϕ + µ2,

(61)

ω = − ∂S

∂v∗
, Pθ = ∂S

∂θ∗
, Pϕ = ∂S

∂ϕ∗
. (62)
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The solution of Equation (58) is

∂S

∂r∗
= −2κ (r − rh) B̃ ± 2κ (r − rh) (B̃2 − ÃC̃)

1
2

Ã
, (63)

where S is the Hamilton principal function, and ∂S
∂xµ is the generalized four-

momentum, so both S and ∂S
∂r∗

are real numbers. We can obtain(
B̃2 − ÃC̃

) ≥ 0· (64)

Because B̃ andC̃ in Equations (60) and (61) are concerned with energy
ω , Equation (64) is the equation that the particle’s energy level should be
satisfied.

Supposing D̃ = B̃ + ω, Ẽ = C̃ − 2eA1ω, Equation (64) becomes

(D̃ − ω)2 − Ã(Ẽ + 2eA1ω) ≥ 0· (65)

We select qual sign in Equation (65) ,the solutions are

ω± = (D̃ + eÃA1) ± (2eÃA1D̃ + e2Ã2A2
1 + ÃẼ)

1
2 · (66)

This is the Dirac energy level distribution of the scalar particle. ω ≥ ω+ is the
positive energy state, and ω ≤ ω− is the negative energy state. The state of the
particle with energy ω− < ω < ω+ is the forbidden area, and the width of the
forbidden area is

�ω = ω+ − ω− = 2(2eÃA1D̃ + e2Ã2A2
1 + ÃẼ)

1
2 · (67)

Comparing Equation (59) with Equations (18) and (19), we have Ã|r→rh
=

ĝ11|r→rh
= 0, so

�ω|r→rh
= 0, (68)

ω̃0 = ω+|r→rh
= ω−|r→rh

= D̃|r→rh

= [eA1rhv + e(A1g
12 + A2g

22)rhθ + e(A1g
13 + A3g

33)rhϕ − e(A0

+A1g
11 + A2g

12 + A3g
13)]|r→rh

+ (g12 − g22rhθ )|r→rh
(Pθ )r→rh

+ (g13 − g33rhϕ)|r→rh
(Pϕ)r→rh

· (69)

Considering Equations (23) , (24) and (26),we get

ω̃0 = ω0 + B (Pθ )r→rh

2
+

C
(
Pϕ

)
r→rh

2
· (70)

This equation gives us the maximum value of the crossing energy
level of a particle, which is the same as the usual tortoise coordinate
transformation.
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The Hawking thermal spectrum in Equation (33) is

Nω = 1

e[(ω−ω0)−Bkθ /2−Ckϕ/2]/kBT − 1

= − 1

e[ω−(ω0+Bkθ /2+Ckϕ/2)]/kBT − 1
·

Using Equation (41), we obtain

ω0 + Bkθ

2
+ Ckϕ

2
= ω0 + kθ (	θ )r→rh

+ kϕ(	ϕ)r→rh
· (71)

This is the chemical potential. According to the de Brogile relation in the quantum
mechanics

(Pθ )r→rh
= hkθ , (Pϕ)r→rh

= hkϕ, (72)

in the natural unite system h = 1, so the chemical potential in Equation (71)
accords with that in Equation (70).

The phenomenon of the crossing of the particle with positive or negative
energy happens near the event horizon, and the maximum value of the crossing
energy levels is ω̃0. Only if the energy of the particle in the negative energy state,
is higher than the lowest energy of the particle in the positive energy state, it can
radiate out through the forbidden area by tunnel effect. This is the non-thermal
radiation of the black hole.
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